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Problem Statement

• Heterogeneous Memory Systems
– HBM-DRAM, DRAM-NVM, HBM-DRAM-NVM, etc.
– Local and Remote NUMA regions
– Performance, Power and Capacity varies

• Data Allocation and Movement
– Not a trivial problem
– HPC applications have 100-1000s data structures
– Data Structures can scale up to TBs or PBs
– Too many factors to be considered by application programmers to make optimal decisions

– Balance compute, memory and communication resources while maintaining a power budget
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Problem Statement

• Compiler and Runtime frameworks
– Work in tandem to provide user-level Memory Management
– Mostly designed for Homogeneous NUMA memory systems
– Focused primarily on reducing fragmentation, memory leaks and memory corruption
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Hypothesis

• The onus of allocating memory for an application on a heterogeneous memory 
system should move from the programmer to the compiler

• As heterogeneous memory systems become more prominent, compiler and 
runtime frameworks need to be more performance and capacity aware of the 
underlying memory devices to ensure optimal performance of applications
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PEACH: Compiler Framework

source ./install.sh
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Simple Interface for Complex Memory (SICM)

• Data allocation and movement enabling API library

• Uses jemalloc underneath

• Extends the arena based allocation concepts of jemalloc to heterogenous 
memory system
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Performance Awareness

• SICM identified NUMA devices but did not have any information about performance (Memory 
Bandwidth)

• Extended SICM to classify NUMA devices based on performance
– At installation, install.sh runs a set of performance benchmarks that classify each NUMA device as 

fast, slow, slowest for each CPU/GPU group 
– Uses a Wr-only and single write and multiple read benchmark to measure bandwidth
– Uses a simple k-means clustering to classify the NUMA devices

– Also measures data movement bandwidth
– Installation time increases by 45-75 seconds depending on the no. of NUMA devices

• Classification is read at runtime from a file

• Extended the SICM low-level API to incorporate the performance classification
– Modified sicm_init() and sicm_fini() to sicm_class_init() and sicm_class_fini()
– Added sicm_class_alloc(), sicm_class_realloc(), sicm_class_move() and sicm_class_free()
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Performance Awareness

• NUMA Classification file
– sicm_config
– Sourced into runtime using an environment 

variable

NUMA Device classification
CPU ID NUMA ID Type Init(Mb/s) Triad(Mb/s)
72-95 1 fast 83665.204771 67649.395964
72-95 0 slow 41630.203821 33573.023831
72-95 3 slowest 4073.821638 6189.551163
72-95 2 slowest 1220.172135 810.849809
CPU ID NUMA ID Type Init(Mb/s) Triad(Mb/s)
48-71 0 fast 80094.647213 69189.514867
48-71 1 slow 44094.883771 34690.394709
48-71 2 slowest 4138.825899 6079.981850
48-71 3 slowest 1202.866903 799.498232
…
Page Migration measurement
CPU ID SRC DEST PgMigration(Mb/s)
72-95 0 1 17733886.936360
72-95 0 2 35102711.638282
72-95 0 3 35168571.209754
72-95 1 0 19843487.223887
72-95 1 2 35407006.497107
72-95 1 3 35253389.253937
72-95 2 0 9014960.473411
72-95 2 1 36200631.351450
72-95 2 3 40998997.652807
72-95 3 0 13322124.177216
72-95 3 1 34191903.297198
72-95 3 2 33858166.176772
…
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AllocTransform Pass

• LLVM IR-level pass
– Completely integrated into clang/LLVM pipeline (load using –Xclang), SICM linked 

dynamically
– Inserts sicm_class_init(), sicm_class_fini() at the entry and return of main()
– malloc(size) à sicm_class_alloc(speed, size) where speed(0/1/2) indicates the WR BW
– realloc(ptr, size) à sicm_class_realloc(speed, ptr, size) where speed(0/1/2) indicates the 

WR BW
– free(ptr) à sicm_class_free(ptr)
– sicm_class_move(speed, ptr) where speed(0/1/2) indicates the WR BW
– Other APIs, Data structure added but are used internally

• Each allocation has its own arena. Mapping is maintained in a data structure
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AllocTransform Pass

define dso_local i32 @main(i32 %argc, i8** %argv) #0 {
entry:
%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 8
…
%40 = load i64, i64* %size10, align 8
%call58 = call noalias i8* @malloc(i64 %40) #5
%41 = bitcast i8* %call58 to double*
store double* %41, double** %a, align 8
%42 = load i64, i64* %size10, align 8
%call59 = call noalias i8* @malloc(i64 %42) #5
%43 = bitcast i8* %call59 to double*
store double* %43, double** %b, align 8
…
ret i32 0
}

define dso_local i32 @main(i32 %argc, i8** %argv) #0 {
entry:

%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 8
call void @sicm_class_init()
…
%43 = load i64, i64* %size10, align 8

%44 = zext i32 0 to i64
%sicmalloccall3 = call i8* @sicm_class_alloc(i64 %44, i64 %43)
%45 = bitcast i8* %sicmalloccall3 to double*
store double* %45, double** %a, align 8
%46 = load i64, i64* %size10, align 8
%47 = zext i32 0 to i64
%sicmalloccall4 = call i8* @sicm_class_alloc(i64 %47, i64 %46)
%48 = bitcast i8* %sicmalloccall4 to double*
store double* %48, double** %b, align 8
…
call void @sicm_fini()
ret i32 0

}
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Future Work

• Add a heuristic based policy for the compiler
– Identify access patterns in loops and allocate the data structures in the appropriate 

memory class
– Introduce loop splitting and scheduling memory movement and loop execution

• Work on characterizing LULESH, VPIC, SNAP
– AMG will be hard to run with the compiler as it uses memory wrappers
– Add CFG analysis/transformations to help work around them
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Conclusion

• PEACH enables applications allocate and move data between heterogeneous 
memory devices on a system

• Application programmers can continue to design their applications the same 
as before


